- ECG
- Bayes Theorem
- ETT Bicycle or treadmill?
- Coronary Artery Disease
- New Risk Factors
 - Coronary calcium scores
- Echo

• ECG

Copyright © 2005 by Elsevier Inc.

Accurate positioning of Chest leads essential

R Wave Progression

Copyright © 2005 by Elsevier Inc.

Pathological Q Wave

≥ 0.04 sec wide

>25% of R wave

The inadequacy of the resting ECG 'falsely re-assuring'

150 patients presenting with Angina

66 had normal resting ECG

37/66 at angiography had severe CAD

Bayes Theorem

Rev Thomas Bayes 1702 - 1760

Bayes' theorem A theory of probability

'The post test probability is proportional to the <u>pretest</u> probability'

Bayes' theorem A theory of probability

'The post test probability is proportional to the pretest probability'

Some-one tested positive for a disease; the probability that they actually have the disease depends,

not only on the accuracy and sensitivity of the test, but on their background (prior) probability of the disease.

ETT Bicycle or treadmill?

The Exercise ECG

1 = Iso-electric

2 = J point

3 = J + 80 msec

Early positive ETT

J point depression not significant

. |

p

Copyright © 2005 by Elsevier Inc.

Value of Bruce ETT

Copyright © 2005 by Elsevier Inc.

25,927 apparently healthy asymptomatic men 20 to 82 years of age

Importance of Functional Capacity as a predictor of mortality

In low risk individuals the functional capacity is an overwhelmingly important predictor of mortality (RR 3.96) compared to Thallium perfusion defect

Snader JACC 1997.

Copyright © 2005 by Elsevier Inc.

Relative risk of death among subjects with various risk factors Is related to achieved exercise workloads.

For each 1-MET increase in exercise capacity, the survival improved by 12 percent N Engl J Med 2002

Survival curves: patients with normal/mildly impaired LV function

Prognostic assessment using Duke treadmill score

Treadmill vs Bicycle

- Treadmill **exercise testing** has several advantages over cycle ergometry
- for most people, treadmill walking is a more familiar activity than cycling.
- it involves a larger muscle mass and
- more work against gravity.
- consequently, Oxygen consumption is, on average, 5–10% higher on the treadmill than on a cycle ergometer

Why use a Treadmill vs Bicycle

- Exercise capacity v.important predictor
 - 1 min on Bruce = 8% decrease in mortality
- Strongest predictor of mortality is exercise capacity
- Survey of VA Hospitals >82% use Bruce
- Patients achieve a higher workload on a Treadmill vs Bicycle

Hambrecht RP, Schuler GC, Muth T, et al.

Greater diagnostic sensitivity of treadmill versus cycle exercise testing of asymptomatic men with coronary artery disease.

Am J Cardiol 1992;

70: 141–46.

Bicycle vs Treadmill

Given two tests in the same patient, the one capable of eliciting a higher level of exercise represents a truer examination of cardiopulmonary function (rather than the limitations of local muscle fatigue).

Coronary Artery Disease

Cumulative 4-year survival of medically treated CAD patients

Atheroma morphology by intravascular ultrasound

The developing atheroma spares the lumen. When the lumen is affected, the atheroma is well advanced.

Survival: normal coronary arteriograms vs. 'mild' disease

Plaque-fissure and intracoronary thrombus

Minor coronary lesions may thrombose and result in subsequent MI

- New Risk Factors
 - Coronary calcium scores

As plaque ages, calcium is laid down EBCT sensitivity 80 to 90%, specificity 60% for plaque

EBCT uses a rotating electron beam and a stationary tungsten target

MSCT scanners employ an x ray beam and multiple detectors

Copyright © 2005 by Elsevier Inc.

Coronary artery calcification scores

Estimated Annual Risk of Death or MI with increasing calcium scores in patients at intermediate risk of coronary heart disease

In patients with an intermediate risk with a CAC score \geq 400:

the patient's 10-year CHD risk is equivalent to that noted with diabetes or peripheral arterial disease

ACC/AHA 2007 Clinical Expert Consensus Document on Coronary Artery Calcium Scoring

Asymptomatic individuals with an intermediate risk may be reasonable candidates for CHD testing using CAC as a potential means of modifying risk prediction and altering therapy.

On the other hand, there is little to be gained by testing with CAC in patients with low risk.

Patients at high risk eg Diabetes should be treated aggressively anyway

New role for MSCT

Non-invasive coronary angiography

Dual imaging (calcium and lumen) maybe major advance

64-slice cardiac images of a normal heart and coronary arteries

64-slice coronary CT (A) and conventional coronary angiogram (B) demonstrating a lesion (arrow) in the mid-right coronary artery.

.

.

Copyright © 2005 by Elsevier Inc.

Copyright © 2005 by Elsevier Inc.

Copyright © 2005 by Elsevier Inc.

Non-invasive MSCT for calcium score and angiography

3D reconstruction showing Coronary irregularities in a Diabetic without calcification

64-slice coronary CT images of a normal coronary tree.

Schussler, J. M et al. Heart 2007;93:290-297

Patent grafts to the left anterior descending (LAD), left circumflex (LCx) and right coronary artery (RCA)

Lesion in the graft to the LAD and a patent graft to the diagonal branch. Invasive angiography confirm these findings.

Other novel ways of assessing risk

Carotid artery Intimal medial thickness

Greater carotid intimal:medial thickness and risk of cardiovascular sequelae

Other novel risk factors:

Importance of inflammatory markers

Inflammation markers and relative risk

Copyright © 2005 by Elsevier Inc.

Risk ratios of nonfatal myocardial infarction, coronary death

C-reactive protein concentrations at entry into the Physicians Health Study

Risk factors for a metabolic syndrome

C-reactive protein increases with a rising number of metabolic risk factors

mortality among individuals with and without metabolic syndrome

• Echo

Copyright © 2005 by Elsevier Inc.

Copyright © 2005 by Elsevier Inc.

Functional Class	Clinical Status	O ₂ Cost ml/kg/min	METs	Bicycle Ergometer 1 watt = 6 kpds	Treadmill Protocols													
Normal and I					Bruce 3-min stages MPH %GR		Cornell 2-min stages		Balke- Ware % grad at 3.3 mph	2-min stages First 2 stages 1 min			Naughton 2-min stages			Weber 2-min stages		
	je, activity			For 70 kg body weight	5.5	20	MPH %GR						%GR 3 MPH		%GR 3.4 MPH			
	Healthy dependent on age,	56.0	16		5.0	18	5.0	18	26 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7	MPH	H %GR	3.4 3.1	%GR 24 24		32.5	1		
	는 는	52.5	15	KPDS 1500 1350 1200 1050 900 750 600			4.6	17		3.4	24				30	24		
	nde	49.0	14				4.2 16	-		3.1	24				27.5	22		
	ede	45.5	13		4.2	16									25	20		
	y de	42.0	12					17	3	21	2.7	24		22.5	18	0.0000 MWO 1000		
	#E	38.5	11		1		3.8	15	15	37700	NT.	1958200	F7503	%GR 2 MPH	20	16	MPH %	%GF
	±	35.0	10		3.4	14	3.4	14	13 12 11 10 9 8 7 6 5 4 3 2	3	17.5	2.3	24		17.5	14	3.4	14.0
	thy	31.5	9							3	3 14	2	24		15	12	3.0	15.0
	Leal	28.0	8				3.0	13							12.5	10	3.0	12.5
	2	24.5	7		2.5	12	2.5	12		0				17.5	10	8	3.0	10.0
Ш	auta	21.0	6				2.1	11		3	10.5	2	18.5	14	7.5	6	3.0	7.5
	Sedentary healthy ited	17.5	5	450	1.7	10	1.7	10	3	3.0	7.0	2	13.5	10.5	5	4	2.0	10.5
111	Sede	14.0	4	300 150	1.7	5	1.7		1	3.0	3.0	2	7	7	2.5	2	2.0	7.0
	- lotd	10.5	3							2.5	2.0	2	3.5	3.5	0		2.0	3.5
	Symptomatic	7.0	2		1.7	0	1.7	0		2.0	0	2	0	0			1.5	1
IV	1 "	3.5	1			-		-									1.0	0
IV		0.0	- 7/1														1.0	

Copyright © 2005 by Elsevier Inc.

Copyright © 2005 by Elsevier Inc.

Coronary artery calcification scores

Copyright © 2005 by Elsevier Inc.